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Abstract. The work presents a detailed numerical analysis of the order of accuracy of some proposed
cell centered, finite volume schemes for the solution of the 2-D gasdynamic equations on triangular
unstructured grids. All the schemes analyzed are nominally second order accurate and they are based
on a MUSCL-type linear reconstruction of interface properties. The schemes under consideration are
also nominally flux-vector splitting-type schemes. The basic aspects effecting the scheme's order of
accuracy are the form in which the reconstruction process is implemented and the form in which the
limiting process is performed. The schemes are tested on a linear convection-like model equation and
the numerical solutions are compared to the analytical solution, for different mesh sizes, in order to
assess the scheme's order of accuracy.
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1. INTRODUCTION

Since the pioneering work of Barth and Jespersen (1989), various upwind, nominally second order
accurate, finite volume schemes have been proposed in the literature (Durlofsky, Engquist, and Osher,
1992, Lin, Wu, and Chin, 1993, Venkatakrishnan, 1995, Sleigh et al., 1998). In these papers second
order accuracy is sough by some kind of gradient evaluation within the control volume, followed by
extrapolation of the cell centered properties up to the cell interfaces.  Upwinding is achieved via flux
vector splitting techniques. Limiting procedures are, then, used in order to guarantee solution
monotonicity.

Assessing the effective order of accuracy for unstructured finite volume methods is not a
straightforward task, when compared to classical structured finite difference/volume techniques. In
these latter cases, an order of accuracy analysis may be performed via Taylor series expansions of the
difference scheme. Such an analysis is not applicable when the mesh points connectivity is variable, as
is the case for unstructured grid methods. Therefore, numerical computations of model problems
seems to be the only avenue to pursue if one seeks to determine the order of accuracy of such methods.



The present work presents a detailed numerical analysis of the order of accuracy of some proposed
cell centered, finite volume schemes for the solution of the 2-D gasdynamic equations on triangular
unstructured grids (Barth and Jespersen, 1989, Azevedo and Figueira da Silva, 1997). The schemes
analyzed are nominally second order accurate, based on a MUSCL-type linear reconstruction of
interface properties, and they are also nominally flux-vector splitting-type schemes. The basic aspects
effecting the scheme's order of accuracy are the form in which the reconstruction process is
implemented and the form in which the limiting process is performed.

Although several different implementations were performed, two basic concepts were tested with
regard to the reconstruction process. The first concept essentially attempts to create a one-dimensional
stencil normal to the control volume edge of interest and, then, it uses this 1-D stencil in a very
straightforward fashion in order to reconstruct interface properties. The other approach is based on
computing cell averaged property gradients and using those in order to obtain linear reconstructed
interface properties. The schemes are tested on the linear convection-like model equation (Durlofsky,
Engquist, and Osher, 1992) and the numerical solutions are compared to the analytical solution, for
different mesh sizes, in order to assess the scheme's order of accuracy. The results obtained with the
upwind schemes are compared to those computed with the centered Jameson scheme (Jameson and
Baker, 1983, and Jameson and Mavriplis, 1986). The results obtained in some cases are, at the same
time, interesting and disturbing, indicating that many so-called second order schemes may be quite far
from achieving true second-order accuracy, at least in general unstructured triangular grids.

2. PROBLEM FORMULATION

In order to be able to analyze the order of accuracy of unstructured finite volume methods, one
needs to numerically solve a model problem. The choice of this model problem is dictated by several
constraints. Obviously, the model problem must have a known analytical solution at all times. Another
desirable feature is that this solution should be continuous, so that the order of accuracy can be
measured by comparison with the computed result via successive refinements of the computational
mesh. Moreover, it is essential that the numerical results are not influenced by the conditions arising at
the boundaries of the computational domain. With these restrictions in mind, and following the work
in Durlofsky, Engquist, and Osher (1992), the authors have chosen as model problem the two-
dimensional periodic linear advection problem, using as initial conditions for the scalar quantity a
sinus curve in both directions. The computational domain is a square with unity side and the mesh is
composed of regular triangles. The analysis starts with a coarse mesh, where the computations are run
through one period and the L1 norm is calculated. The mesh is halved successively, and the
computations rerun. The slope of the best fit line, in a least squares sense, through a plot of the
logarithm of the L1 norm as a function of the logarithm of the characteristic size of the mesh gives a
measure of the true order of accuracy of the method.

For the scalar, linear model problem considered in the present case, the governing differential
equation can be written as

( ) 0=⋅∇+
∂
∂

ua
t

u �

  . (1)

Here, u is the dependent variable, ∇⋅ ( ) is the divergent operator and jaiaa yx
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advection velocity. Moreover, the boundary conditions are periodic on all four sides of the square
computational domain.

The governing equations are discretized in a cell centered context in which the discrete vector of
conserved variables for the i-th cell is defined as
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The Eq. (1) can, then, be rewritten for each i - th control volume as
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It should be observed that, for a cell centered approach, the control volume used for the integration
of the governing equations is formed by each triangular cell itself (Batina, 1991). The role of the
spatial discretization algorithm is to approximate the surface integral in Eq. (3). This aspect will be
discussed in detail in the forthcoming paragraphs.

The present work uses a well-tested, fully explicit, 2nd-order accurate, 5-stage Runge-Kutta time-
stepping scheme (Mavriplis, 1988) to advance the governing equations in time.

3. SPATIAL DISCRETIZATION SCHEMES

The primary interest in the present work is to discuss order of accuracy issues associated with the
unstructured grid implementation of higher order upwind schemes. In particular, the emphasis is on
triangular grids and flux-vector splitting schemes. Hence, a scalar version of Liou's AUSM+ scheme
(Liou 1994, 1996) was implemented both as a nominally 1st-order scheme and as a nominally 2nd-
order scheme. The 1st-order scheme implementation follows the work of Azevedo and Korzenowski
(1998). Moreover, the complete details of the AUSM+ scheme implementation are described in the
cited reference, and they will not be repeated here. The basic difference between the scheme in that
reference and in the present work is the reinterpretation of the scheme for a linear scalar problem.
Therefore, the split interface Mach numbers and convective speeds, as they appear in the original
AUSM+ scheme, reduce to the constant advection velocity in the present case. The 2nd-order
implementation uses a MUSCL reconstruction (van Leer, 1979). Therefore, the second order scheme
follows exactly the same formulation, except that the left and right states that appears in the 1st-order
scheme are obtained by a MUSCL extrapolation of the scalar variable. The reconstruction and limiting
methods used to obtain the left and right states will be discussed in the forthcoming sections.

For comparison purposes, a centered scheme was also implemented.  Again, the current
implementation of the centered scheme follows Azevedo and Korzenowski (1998). It is worth noting
that, as this scheme is equivalent to a central difference scheme, it is necessary to add artificial
dissipation terms to control nonlinear instabilities (Jameson and Mavriplis, 1986).

4. RECONSTRUCTION METHODS

Two basic concepts were tested in the present work with regard to the reconstruction process. The
first concept essentially attempts to create a one-dimensional stencil normal to the control volume
edge of interest and, then, it uses this 1-D stencil in a very straightforward fashion in order to
reconstruct interface properties. The other approach is based on computing cell averaged property
gradients and using those in order to obtain linear reconstructed interface properties.

The one-dimensional reconstruction approach is inspired in the work of Lyra (1994). The major
difference between the present implementation and the cited reference lies in the direction in which
the one-dimensional stencil is constructed. In Lyra (1994), the stencil for extrapolation is constructed
along the direction of the edge. Here, since a cell centered finite volume method is of interest, the
extrapolation stencil is constructed in a direction normal to the edge.

In an attempt to reinterpret the 1-D ideas in the present unstructured grid context, a line is drawn
normal to the edge and passing through the center of the inscribed circle to that triangle. A third point
is located over this line, and away from the edge under consideration, at a distance from the center of
the inscribed circle equal to the diameter of the circle. The code, then, identifies in which control
volume this 3rd point lies, and it uses the properties of this triangle in the linear reconstruction of the
primitive variables.

The gradient reconstruction approach followed in the present work consists of attributing cell
averaged properties and gradients to the control volume centroid, which allows the linear
reconstruction of properties at any point within the cell. Gradients are computed using Green's
theorem (Swanson and Radespiel, 1991) and, therefore, transforming derivative calculations into line
integrals around appropriate control volumes (in the 2-D case). In the present work the triangles
themselves are used as the control volumes for the gradient calculation.



5. LIMITING PROCEDURES

In order to avoid oscillations, extrapolated states must be limited. Several different limiters have
been implemented in the present work, including the minmod, van Leer, van Albada and superbee
limiters (Hirsch, 1990). However, the majority of the results discussed here used only the minmod
limiter. Another aspect concerns the fact that the limiter construction is clearly dependent on the
approach used for the linear reconstruction. Hence, the form used to implement the limiter associated
with the one-dimensional approach for property reconstruction is different from the one used when the
gradient reconstruction is adopted. For the 1-D reconstruction case, the expressions for the limiter, as
it was implemented in the present work, can be found in Azevedo and Korzenowski (1998). In the
case where gradients are used in the reconstruction, the limiter expressions are similar to that of the
previous method. Nevertheless, the ratios of gradients used in the calculation are obtained using the
properties at the edge midpoint, which are extrapolated from the centroid properties using the
calculated gradients. This is in contrast with the 1-D reconstruction case, which uses the stencil
already set up during the one-dimensional property reconstruction for the calculation  of the gradient
ratios.

6. MESH GENERATION AND BOUNDARY TREATMENT

The model problem considers an extremely simple geometry and, therefore, one would think that
triangular mesh generation in this case would be a trivial task. This would indeed be true, except that
the authors wanted to have some additional control on the grid being generated and some additional
information, beyond the usual unstructured grid information, was necessary in order to truly
implement the periodic boundary conditions that the model problem requires. The additional control
on the grid was meant to be able to select either a truly unstructured grid or a grid with a user-selected
orientation of the triangles. This control would allow the investigation of the grid orientation effect on
the order of accuracy of the schemes tested. One should observe that, since the computational domain
is a square with unit side length, it is natural to divide the domain into squared control volumes based
on the number of subdivisions in each side of the domain. Hence, the triangular grid could be obtained
by dividing each quadrilateral volume by one of its diagonals, yielding two triangles. The
implementation adopted allows the user to select the division with diagonals oriented with +45° and
-45° with respect to the x axis.

Therefore, the user can select among three different grids in the present case, namely a truly
unstructured grid, in which the orientation of the diagonals is somewhat random, and grids with -45°
and +45° for diagonal orientation. The truly unstructured grids were generated using a simplified
advancing front method as described by Lo (1985). Examples of the possible grid types are shown in
Figure 1.

Figure 1: Grid topologies used in the present investigation: (a) truly unstructured grid; (b) diagonals
oriented with - 45°; and  (c) diagonals oriented with + 45°.

The grids shown in Figure 1 have the coarsest resolution used in the present work, namely with 10
subdivisions along each side of the squared domain or a characteristic length of 0.1. This yields a grid



with 200 triangular control volumes, regardless of the mesh topology adopted. The investigation also
considered grids with 20 × 20, 40 × 40 and 80 × 80 divisions. These yield, respectively, a total of 800,
3200 and 12800 control volumes and characteristic lengths of 0.05, 0.025 and 0.0125 dimensionless
length units.

The model problem considers periodic boundary conditions along the 4 sides of the squared
computational domain. Hence, regardless of the grid topology adopted, the logic in the grid generation
routine stores enough information in order to allow an exact implementation of this boundary
condition. The procedure stores, for each segment along the boundary, the identification of the
corresponding segment along the boundary “on the other side” of the computational domain. Since
this is performed in the very early stages of grid generation, the routine has enough information to
latter identify corresponding internal triangles along the boundaries which should be used as triangle
pairs for periodic boundary condition implementation. Although boundary conditions are implemented
through the use of ghost volumes in the present code, the procedure consists in forcing the ghost
volume associated with a given triangle along the boundary to receive the property values of the other
internal triangle of the pair, previously identified.

7. RESULTS AND DISCUSSION

The work has considered a simple, 2-D, linear, scalar advection problem, as previously described.
The main objective of the work is to identify how the error in the solution decreases as the mesh is
refined. Hence, all simulations will run the model problem for one period of the solution and, then,
compare the numerical solution with the exact solution for the problem. The global error will be
measured in terms of the L1 norm of the difference between exact and numerical results. This can be
expressed as
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where the point with coordinates (xi,yi) indicates the centroid of the control volume. One should
observe that this is the natural definition of the error for a cell centered finite volume scheme.
However, Durlofsky, Engquist, and Osher (1992) point out that one might obtain somewhat different
results, in terms of order of accuracy, if some form of averaging of the computational results is
performed prior to compute the error.

Hence, a calculation of the L1 norm of this averaged error was also implemented in the code. In the
present case, this averaging was performed by obtaining (averaged) numerical results at the nodes of
the control volumes. Therefore, the L1 norm of this averaged solution at the nodes would be computed
using an expression similar to Eq. (4), but with exact and numerical values of u evaluated at the nodal
point locations. The averaged numerical values of the function at the nodes are obtained simply by an
arithmetic average of the discrete properties of all control volumes which share a given node. This is
sufficient for the present case, since all control volumes have the same area. It is possible that, for a
more generic mesh, one might have to perform some sort of weighted averaging, using the control
volume areas as weights.

The procedure used here to verify the order of accuracy of the proposed schemes consists in
running the problem for the four meshes previously defined, with increasing refinement, and plotting
the logarithm of the L1 norm of the error as a function of the logarithm of the mesh spacing. A best fit
straight line, in the least square sense, is passed through these points and the line slope determines the
order of accuracy of the method.

All tests were run for a constant CFL of 0.1, except for a single test which was run with CFL =
0.01 to make sure the order of time accuracy of the scheme had no effect in the results. Moreover, all
upwind solutions used the AUSM+ scheme. Both the cases with linear advection in the x-direction as
well as advection along a 45° direction with the x-axis were considered. These two cases correspond,
respectively, to the advection velocity a

�

= (ax,ay) = (1,0) and (1,1). The importance of testing these
two cases is associated with an evaluation of the effect of the mesh orientation on the final order of
accuracy for the schemes. For some of the triangular grids considered in this investigation, an
advection velocity a

�

 = (1,1) is going to be either aligned with a large number of grid edges or



perpendicular to a large number of grid edges. Hence, it is important to evaluate how this can affect
the order of the methods.

The initial tests used the one-dimensional-type of property reconstruction at interfaces for the
nominally 2nd-order scheme. The first test case considered a truly unstructured mesh and the
convection velocity a

�

 = (1,0). The results are shown in Figure 2 for the nominally 1st-order scheme
and the 2nd-order scheme with the minmod and superbee limiters. The actual order of accuracy
obtained numerically in each case is also presented in Table 1. The L1 norm of the error for these
results was calculated without any averaging procedure, i.e., the error is calculated for properties
evaluated at the actual control volume centroid.

Table 1: Order of accuracy for unstructured grid with one-dimensional reconstruction for the case ax =
1 and ay = 0.

Method Order of Accuracy
AUSM+ - 1st order 0.82

AUSM+ - 2nd order with minmod 0.94
AUSM+ - 2nd order with superbee 0.65

It is clear form the results in Figure 2 and Table 1 that neither nominaly 2nd-order case is even
close to true 2nd-order accuracy. Actually, calculations with the superbee limiter are yielding an order
of accuracy which is smaller than that of the 1st-order scheme. Moreover, the 1st-order scheme is also
somewhat worse than true 1st-order, and the 2nd-order scheme with the minmod limiter gives a
slightly better order of accuracy than the 1st-order scheme. It is also strange that calculations with the
minmod limiter give better order of accuracy than those with the superbee limiter since the former is
supposed to be much more dissipative.
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Figure 2: L1 norm of the error for unstructured
grid with one-dimensional reconstruction for
the case ax = 1 and ay = 0. Lines are least
square fits.
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Figure 3: L1 norm of the error for grid with
diagonals oriented -45°, with one-dimensional
reconstruction, for the case ax = 1 and ay = 0.
Lines are least square fits.

Table 2: Order of accuracy for grid with diagonals oriented -45°, with one-dimensional reconstruction,
for the case ax = 1 and ay = 0.

Method L1 Norm without Averaging L1 Norm with Averaging
AUSM+ - 1st order 0.82 0.77
AUSM+ - 2nd order 0.91 1.03

A similar analysis for a grid with diagonals oriented -45° with respect to the x-axis, and still
considering a

�

 = (1,0), is presented in Figure 3. The 2nd-order scheme uses the minmod limiter.
Moreover, both cases in which the error is calculated with and without averaging of numerical
property values are presented in this figure. The slope of the least square fits for these cases are
indicated in Table 2. One can see that the grid orientation has essentially no effect on the 1st-order



scheme in this case, and it has a small effect on the 2nd-order scheme. Moreover, the solution
averaging prior to the error calculation improves the measured order of accuracy for the 2nd-order
scheme, which is consistent with the results reported in Durlofsky, Engquist, and Osher (1992).
However, it has a small detrimental effect in the measured order of accuracy for the 1st-order scheme.
In any event, it is clear from these results that the nominally 2nd-order scheme was quite far from
yielding true 2nd-order accuracy.
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Figure 4: L1 norm of the error without
averaging for grid with diagonals oriented
-45°, gradient reconstruction and the case ax =
1 and ay = 0. Lines are least square fits.
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Figure 5: L1 norm of the error with averaging
for grid with diagonals oriented -45°, gradient
reconstruction and the case ax = 1 and ay = 0.
Lines are least square fits.

The next results discussed use property gradient-based reconstruction. The plots for the L1 norm of
the error for a test case with advection velocity given by ax = 1 and ay = 0, and using the grid with
diagonals oriented with -45°, are presented in Figure 4 for the case in which no averaging of the
results is performed before computing the error. The plots for the corresponding cases with averaging
of the numerical results prior to the error calculation are shown in Figure 5. These figures show results
for the 1st-order upwind scheme and for the 2nd-order upwind scheme with the minmod limiter and
without any limiter at all. Moreover, for comparison purposes, the figures also show the L1 norm of
the error for the calculations with a 2nd-order centered scheme. The orders of accuracy actually
obtained in each case are summarized in Table 3. Clearly, the 1st-order upwind scheme results are the
same reported in the previous section, since the form of reconstruction does not affect the 1st-order
scheme.

Table 3: Order of accuracy for grid with diagonals oriented -45°, with gradient reconstruction, for the
case ax = 1 and ay = 0.

Method L1 Norm without Averaging L1 Norm with Averaging
AUSM+ - 1st order 0.82 0.77

AUSM+ - 2nd order with  minmod 1.37 1.55
AUSM+ - 2nd order, no limiting 1.23 1.27

2nd order centered scheme 2.01 1.87

The actual order of accuracy obtained with the nominally 2nd-order upwind scheme should be
compared, for instance, with the results in Table 2. It is clear from this comparison that the use of
gradient reconstruction has yielded better order of accuracy than the 1-D reconstruction process.
However, there are some strange features in the results shown in Table 3. For instance, it is not clear
why the calculation without any limiter at all yields an actual order of accuracy which is smaller than
that obtained when the calculations are performed with the minmod limiter. The model problem has a
smooth solution, which means that a limiter should actually play no role at all. In the worst case, the
limiter might be clipping the smooth peaks and valleys of the smooth model function if it perceives the
gradients as too high. But, in any case, there is no reason to obtain better results with the minmod



limiter than without any limiter. Furthermore, attempts to run this case with the superbee limiter
resulted in numerical instability for the finer grids, although a solution could be obtained with the
coarsest grid considered.

The calculations summarized in Table 3 also indicate that even the best results obtained with the
2nd-order upwind scheme were still quite far from true 2nd-order accuracy as displayed by the
centered scheme. It is also interesting to observe that the averaging of the solution prior to the error
calculation consistently improves the numerical order of accuracy of the 2nd-order upwind scheme.
However, this is not true for the 1st-order upwind scheme nor for the 2nd-order centered scheme.
These results are in contrast with those reported in Durlofsky, Engquist, and Osher (1992), where the
averaging always improves the computed order of accuracy. It should be emphasized, however, that
the averaging is performed in a different fashion in the present work, when compared to the cited
reference. Here, the averaged value of the solution is computed at the nodes of the mesh from the
discrete cell-averaged values calculated at the cells by the present cell-centered scheme. In the cited
reference, this “averaged value” is computed at the center of the squared cells formed by two adjacent
triangles.

A study was also performed to investigate the effect of the CFL number on the present results. For
that, a grid with diagonals oriented with +45° was used, together with an advection velocity given by
ax = 1 and ay = 0. The AUSM+ scheme with gradient reconstruction and with the minmod limiter, was
used. The test case was run with CFL = 0.1 and 0.01. The order of accuracy obtained in the various
cases analyzed is presented in Table 4. For comparison purposes, the orders of accuracy indicated in
Table 4 were calculated using only the results for the three coarsest meshes. This was done because
the initial results already indicated that there was no CFL number influence in the order of accuracy of
the methods and the cost of running the finest grid with CFL = 0.01 was very high. Moreover, for the
cases in which values of the L1 norm of the error were available for the four grids, i.e., for the cases
with CFL = 0.1, the order of accuracy obtained using the results for the four grids is indicated in
parentheses in Table 4.

Table 4: Effect of the CFL number on the order of accuracy. Calculations used grid with diagonals
oriented +45°, with gradient reconstruction and the minmod limiter, for the case ax = 1 and ay = 0.

Method CFL L1 Norm without Averaging L1 Norm with Averaging
1st order 0.1 0.77    (0.82) 0.69    (0.77)
1st order 0.01 0.77 0.69
2nd order 0.1 1.42    (1.37) 1.59    (1.55)
2nd order 0.01 1.42 1.59

The effect of grid orientation was investigated by considering grids with a +45° and a -45°
orientation for the quadrilateral diagonals used to construct the triangular meshes. The minmod limiter
was also used in these cases. In order to make any grid effects more evident, the linear advection
problem with ax = ay = 1 was selected for this test case. Moreover, a CFL number of 0.1 was used in
the tests. The plots for the L1 norm of the error are presented in Figure 6 for the case in which no
averaging of the results is performed before computing the error. The corresponding results for the
cases with averaging of the numerical solution prior to the error calculation are shown in Figure 7.
These figures show results for both the 1st-order and 2nd-order schemes. The orders of accuracy
actually obtained in each case are summarized in Table 5.

Table 5: Effect of grid orientation on the order of accuracy. Calculations used 2nd-order gradient
reconstruction and the minmod limiter, for the case ax = ay = 1.

Method Grid Orientation L1 Norm without Averaging L1 Norm with Averaging
1st order -45° 0.50 0.41
1st order +45° 0.45 0.45
2nd order -45° 1.52 1.51
2nd order +45° 1.49 1.50



Figures 6 and 7, and Table 5 are indicating that, at least for the 2nd-order scheme, this test case
shows very little effect of the grid orientation on the scheme's order of accuracy. Moreover, for the
advection velocity with ax = ay = 1, there is also very little difference between the orders of accuracy
obtained with and without averaging the solution before the error calculation for the nominally 2nd-
order scheme. This situation is in direct contrast with what one sees for the 1st-order scheme. For the
1st-order scheme, there is clearly a mesh orientation effect on the results. One can observe that, for the
mesh with +45° orientation, the order of accuracy obtained is independent of averaging and its value is
somewhat the average between those obtained with and without averaging for the grid with -45°
orientation.
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Figure 6: L1 norm of the error without
averaging, gradient reconstruction and minmod
limiter, for the case ax = ay = 1. Lines are least
square fits.
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Figure 7: L1 norm of the error with averaging,
gradient reconstruction and minmod limiter,
for the case ax = ay = 1. Lines are least square
fits.

9. CONCLUSIONS

An assessment of  the order of accuracy of some higher order finite volume methods for
unstructured grids was performed. The results obtained in some cases are, at the same time, interesting
and disturbing. For the one-dimensional reconstruction results some reasoning can be made to explain
what caused the poor performance observed. The first idea that comes to mind is the fact that there are
reasons to attribute cell averaged values of the properties to the cell centroid. However, the same is not
true for attributing cell averaged values to the center of the inscribed circle, which is essentially what
the present procedure does. Moreover, the order of accuracy of the scheme could probably be
improved if an interpolation is performed in order to obtain the properties at the second points used for
the reconstruction. The current implementation simply attributes to these points the cell averaged
values of the properties of the triangles within which they are located.

The results with gradient reconstruction yield orders of accuracy quite a lot better than those
obtained with the one-dimensional-type reconstruction. Moreover, even though the orders of accuracy
achieved for the present cases are still far from true 2nd order, they are much higher than that
delivered by the corresponding 1st-order scheme calculations. In particular, for the cases with
advection along a 45° direction with the x-axis, the 2nd-order results are about three times better than
those with the 1st-order scheme in terms of the actual order of accuracy one can obtain in the
numerical calculations. However, as discussed in connection with the results in Table 3, some aspects
of the solution behavior with this reconstruction procedure are not fully understood at this point. It is
possible that the observed behavior comes from the fact that, when gradients are used, the
reconstruction process is truly multidimensional, using information from all neighbors of the triangle
under consideration. On the other hand, the limiting procedure does not use information from all
neighbors and, hence, it is actually not providing an adequate limiting for the calculation. Therefore,
with a gradient-type reconstruction, it is possible that a truly multidimensional limiting procedure is
required in order to avoid any problems.
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